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Abstract

An orbit that lies on a Kolmogorov, Arnold, and Moser (KAM) Torus will

remain on that torus until and unless it experiences a force that causes it to leave

the torus. Earth satellites that are subject only to the Earth’s gravity field may

lie on such KAM tori. Analyzing on orbit satellite position data should allow for

the identification of the fundamental frequencies needed to define the KAM tori for

modeling Earth satellite orbits.

KAM Tori are created for the Gravity Recovery and Climate Experience (GRACE)

and Jason-1 satellites to model their orbital motion. Precise position data for the

satellites is analyzed using a modified Laskar frequency algorithm to determine the

fundamental frequencies of the orbits. The fundamental frequencies along with a set

of Fourier coefficients completely describe the tori. These tori are then compared to

the precise orbital position data for the satellites to determine how well they model

the orbits.

The KAM torus created for the Jason-1 satellite is able to represent the position

of the satellites to within 1 km. Further refinement of the torus should be possible,

resulting in a more accurate model of the orbit. The GRACE torus was less successful

at determining the satellite positions. Atmospheric drag cannot be ignored at the

altitude where GRACE flies. It may still be possible to model GRACE with a KAM

torus by applying perturbation theory to the torus; however, further research is needed

to confirm this.
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Application of KAM Theorem to Earth Orbiting

Satellites

I. Introduction

Since the beginning of the space age, thousands of objects have been launched

into orbit. However, unlike terrestrial and airborne systems that are moved to places

where they are not going to interfere with ongoing operations, space systems continue

to float in space until their orbit decays enough to reenter the atmosphere. Thus,

there are still many non-operational systems flying in space, along with our operational

systems. The US Space Surveillance Network (SSN) tracks these objects and attempts

to accurately predict their future motion to ensure that high priority missions are not

impacted.

1.1 Motivation

The standard method for orbit modeling starts with Kepler’s solution to the

Two Body Problem (2BP) and uses perturbation theory to account for some of the

major error sources; these errors are due to effects like variations in the Earth’s grav-

itational field. A common method begins with an initial condition, and the orbits

are integrated forward in time. This is a computationally expensive process, which

restricts the number of perturbations that can be included; for example, the Earth’s

oblateness effect is typically included, but other terms of the geopotential may be left

out, especially when integrating large numbers of orbits. Other methods are analyti-

cal and use series expansions of the equations of motion, which include perturbations

like the geopotential. These series expansions become very complex and must be trun-

cated to make them easier to handle operationally. Orbital predictions created with

these methods are only valid for a short time before they must be recalculated; the

perturbations that are not accounted for, like the higher order gravitational variations,

build up in the error over time.
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1.2 Approach

A more accurate method for orbit determination could reduce the work required

to track all of the objects orbiting Earth. This work attempts to show that the KAM

theorem may be one such method that could be used to model satellite orbits.

The Kolmogrov-Arnold-Moser (KAM) theorem states that a nearly integrable

Hamiltonian system subject to a small perturbation will lie on an invariant torus [9];

these tori have become known as KAM tori. Earth orbiting satellites may behave

according to the KAM theorem since the 2BP is an integrable Hamiltonian system.

Assuming the only perturbation source is the Earth’s gravitational potential, which

causes small, smooth perturbations to the 2BP [19], the criteria for KAM theorem is

met.

The key to determining whether a system lies on a KAM torus lies in finding

the fundamental frequencies of the torus [9]; the number of frequencies corresponds to

the number of coordinates in the Hamiltonian. In the case of Earth orbiting satellites

there are three fundamental frequencies: the anomalistic frequency (ω1), the Earth

rotation rate plus the nodal regression rate (ω2) and the apsidal regression rate (ω3).

These frequencies can be identified from a Fourier transform of the orbital position

data of a satellite. If the satellite’s orbit lies on a KAM torus, the satellite position

can be determined accurately for any point in the future, assuming no other external

forces are encountered.

1.3 Problem Statement

This work looks at two satellite systems, the Gravity Recovery and Climate

Experiment (GRACE) and Jason-1 satellites. Orbital data from each system is run

through a modified Laskar Fourier transform algorithm to determine the fundamental

frequencies of the orbit [10]. These frequencies and their corresponding Fourier series

coefficients define the new coordinates for the Hamiltonian that describes the torus;

the conjugate momenta can be found from the coordinates and their derivatives [20].

2



1.4 Results

Analysis shows that the Jason-1 satellite orbit can be modeled by a KAM torus

to within 1 km of the real orbital data over a 30 day period. Further refinement may

improve this accuracy. The torus for the GRACE satellite was not successful, due

to the appearance of atmospheric drag in the data. It may still be possible to define

the GRACE orbit with a KAM torus, if the torus can be modified to account for the

atmospheric drag.

3



II. Background

This chapter begins with discussions of the GRACE and Jason-1 satellites. These

satellites were chosen because the position data for each is accurately known. Accurate

position data is needed to ensure the frequencies can be identified with as much

accuracy as possible.

Current methods for orbit determination are also explained along with their

drawbacks. The KAM theorem will be discussed in more detail, and past applications

are presented. Finally, explanations of the orbital dynamics and the geopotential are

given.

2.1 GRACE

The mission of GRACE is to measure the temporal and spatial variability of

Earth’s gravitational field. There are some advantages that make GRACE supe-

rior to previous methods for creating a gravity model: the use of identical satellites

flying in formation along with accurate position measurements from onboard GPS

receivers, accelerometer measurements, satellite attitude changes and inter-satellite

range changes. All of these measurements allow GRACE to measure the finer effects

of the gravity field that cannot be seen with an individual vehicle.

Both satellites were launched on 17 March 2002 into co-planar, near circular,

polar orbits at 500 km altitude; the separation of the satellites is kept between 170

and 220 km, which requires a maneuver approximately every 30-60 days. Other than

maintaining the separation of the satellites, the satellites are left to the natural effects

of the gravity field and the orbits are allowed to decay; as of Aug 2007, the satellites

semimajor axes had decayed approximately 27 km [1].

The GRACE-based Earth Gravity Model (EGM) is published approximately

every 30 days. The accuracy of the model comes from the individual measurements

of each satellite as well as the comparison of the measurements. The comparison of

the satellite measurements is how the finer effects are determined; since the satellites

pass over nearly the same position on Earth at slightly different times, the smallest

4



temporal and spatial variations of the gravity field will show up in the differences in

the satellite measurements.

The measurements of the GRACE satellites have shown significant improvement

in the EGM, for terms below about 110, over previous models such as EGM-96 [16].

The GRACE based EGM has also been combined with EGM-96 to create a full

degree/order 360 model (EIGEN-CG01C) [16]. And yet, work continues to bring

further improvement to the models.

2.2 Jason-1

The Jason-1 satellite carries on the mission of the Topex/Poseiden satellite.

Radar altimetry is used to measure surface height of the world’s ocean to an accu-

racy of 3.3 cm [3]; some of the other mission objectives include understanding ocean

circulation and understanding how changes in the oceans and the atmosphere are

related.

Jason-1 was launched on 7 December 2001 into a circular orbit at an inclination

of 66◦ and a mean altitude of 1336 km. This allows for visibility of 90% of the world’s

oceans with a nominal repeat period of 10 days. Maneuvers are scheduled between

repeat periods whenever possible to ensure the most continuity in measurements.

A key to obtaining accurate measurements of the ocean heights is knowing the

orbital position of the satellite to high precision. For Jason-1, the orbital positions are

obtained from a combination of Satellite Laser Ranging (SLR) and the Doppler Or-

bitography and Radio-positioning Integrated by Satellite (DORIS) tracking systems.

This method is able to provide position data that is accurate to within 3 cm [3].

2.3 Modern Orbit Determination

The position data for the GRACE and Jason-1 satellites are quite precise, both

being within a few centimeters. Unfortunately, these are only obtained after the

satellite has passed through the given positions. Trying to predict a satellite’s future

5



position to the same sort of accuracy is not currently possible for any extended length

of time.

The methods that are used today to do orbit determination, prediction and

modeling rely on numerical integration of the perturbed 2BP, or analytical solutions to

the equations of motion. Numerical integration can be very computationally expensive

and has a limit to the period of validity. In the past it could take as much time to

numerically integrate an orbit as it took for the satellite to move through the orbit to

the point to which you were integrating. As the speed of computers has increased, the

time required to perform these integrations has decreased. However, at the same time,

the number of orbits needing to be integrated has increased and the computational

load remains high.

General analytical solutions of the equations of motion through series expan-

sions are computationally less expensive than numerical integration of the orbit; the

solution provides the osculating orbital elements as a function of time, which are used

to determine future positions based on initial conditions [18]. Unfortunately, there

is generally a high level of complexity in the series expansions. To reduce the com-

plexity of the solution, the series are usually truncated after the first few terms. This

also solves the problem of small divisors, which is common when dealing with orbits

that have small eccentricities [17,18]; however, it introduces small error sources which

build up in the solution over time.

Current orbit determination methods are also restricted by how far into the

future they can model the orbit due to the buildup of errors in the accuracy. Because of

the high computational load required for the integrations, the number of perturbations

included is kept fairly low. For example the Earth’s gravitational potential has been

measured to degree and order 360, however, to reduce the computational load, the

J2 term (which is the largest term in the geopotential) is almost always included,

but depending on the computational load that can be handled, there may be no

other terms included, or there may be quite a few other terms included. In the

6



analytical solution, this problem arises from the truncation of the series expansions.

The magnitude of the terms beyond J2 are on the order of 10−6 and smaller, so

this may not have a significant effect as long as the time period for the prediction

is limited, but as the time increases the uncertainty of the solution increases and its

validity decreases.

One area that is hindered by the current methods of orbit determination is the

formation flying of satellites. Each satellite in a formation requires its own orbit

model, which leads to its own level of uncertainty. Assuming the formation needs

to stay within certain tolerances concerning separation and geometry, the problem

becomes very difficult. A more accurate orbit determination method with a longer

period of validity is needed to make formation flight of satellites more feasible.

2.4 Kolmogrov, Arnold, Moser Theorem

The KAM Theorem is the result developed by Kolmogrov [9], then proved by

Arnold [2] and Moser [14], to describe the motion of a nearly integrable Hamiltonian

system that is only subject to small, smooth perturbations. The Hamiltonian for such

a system is given by

Hε(I, ϕ) = ho(I) + εh(I, ϕ), (2.1)

where ho and h are real-analytic functions, ε is a small real parameter, and I and ϕ are

symplectic action-angle variables. The theory states that such a system will lie on a

torus that can be described by the fundamental frequencies of the orbit and associated

Fourier series coefficients; an N-dimensional Hamiltonian will have N frequencies and

will lie on a torus in 2N-dimensional phase space. This equality of the number of

coordinates and frequencies is mandated by the Hamiltonian-Jacobi theorem.

KAM theorem has been shown to approximate well the Restricted, Circular,

Planar, Three-Body Problem (RCPTBP), specifically the motion of asteroids under

the effects of the Sun and Jupiter [5–7]. Celletti and Chierchia [6] showed that the
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asteroid 12-Victoria, in a Keplerian orbit about the Sun and perturbed by Jupiter,

could be modeled using the KAM theorem; in this case the perturbation is equal to

the Jupiter-Sun mass ratio, ε ≈ 10−3. They were able to show that the results of

their analysis agreed well with observed data for the system.

More recently, Wiesel [19] has shown that frequencies for Earth orbits could be

identified, and the orbits could be fit to KAM Tori [13, 20]. Assuming the torus is

exact, any trajectory that lies on the torus will remain on the torus in the future.

This differs from perturbation theory, which is only an approximation of what will

happen in the future and, therefore, must be updated due to error growth.

2.5 Orbital Dynamics

To apply the KAM theorem to Earth orbiting satellites, a reference frame must

be chosen where the torus will be a static geometric structure; this means we need a

coordinate frame that rotates with the Earth [19]. The Earth Centered Earth Fixed

(ECEF) coordinate frame is chosen as the frame of reference for this work, and is

defined with the x component through the Prime Meridian at the equator, the z

component northward through the axis of rotation and the y component pointing in

the right hand sense.

In the ECEF frame, the coordinates of the Hamiltonian are the positions x,

y, and z and the momenta are equal to the inertial velocities resolved along the

coordinate axes [19]. The momenta are given in Equation 2.2

px = ẋ − ω⊕y

py = ẏ + ω⊕x

pz = ż (2.2)

The Hamiltonian is found from H =
∑

i piq̇i − T + V ; rearranging Equation

(2.2), to get the time derivatives of the coordinates, and substituting back in gives

8



the Hamiltonian in terms of the coordinates and momenta only. The resulting Hamil-

tonian for Earth orbiting satellites is given by,

H =
1

2
(p2

x + p2
y + p2

z) + ω⊕(ypx − xpy)

− µ

r

∞
∑

n=1

∞
∑

m=1

(

r

R⊕

)−n

Pm
n (sin δ)

× (Cnm cos mλ + Snm sin mλ) (2.3)

where R⊕ is the equatorial radius of Earth, µ is the gravitational parameter, ω⊕ is the

rotation rate of the Earth and Cnm and Snm are the gravity field coefficients. The Pm
n

are the associated Legendre Polynomials, and r, δ and λ are the radius, geocentric

latitude and east longitude of the of the satellite, respectively, and are defined in

equation (2.4).

r =
√

x2 + y2 + z2

sin δ =
z

√

x2 + y2

tan λ =
y

x
(2.4)

Notice, in this reference frame the Hamiltonian has no dependence on time and is

thus a constant of the motion.

2.6 The Geopotential

For Earth orbiting satellites, the perturbation that is of interest in the applica-

tion of the KAM theorem is the geopotential, which is due to the non-homogeneity

of the planet. Figure 2.1 displays the differences between the theoretical geopotential

of a smooth spherical Earth and the actual geopotential as measured by GRACE [1].

The areas where the potential is highest when compared to the smooth Earth are

raised and colored red, while the areas of lowest potential are recessed and colored

blue.
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Figure 2.1: GRACE geopotential differences from smooth spher-
ical Earth [1].

10



In addition to the geopotential, Earth orbiting satellites also experience atmo-

spheric drag, solar radiation pressure and other effects depending on their orbital

altitude. For low altitude satellites (below ∼ 350 − 400 km) atmospheric drag is the

dominant perturbation. As the orbital altitude nears Geosynchronous Orbit (GEO)

the effects of the gravity field drop off and effects from solar radiation pressure in-

crease. Between these two regions is where the geopotential dominates and where this

author seeks to apply the KAM theorem.

Using the KAM theorem to model satellite motion, based on real orbital data,

takes into account all of the geopotential effects on the satellite. This is a huge

advantage over current methods of orbit determination and prediction which typically

use only a subset of the full geopotential. Since all of the geopotential terms are

included in a KAM torus defined by the analysis of on orbit data, one should be able

to predict more accurately and for longer periods of time than with current methods.

Including the whole of the geopotential in the orbit solution may also allow for

modeling of other perturbations. Small changes in drag on the satellite, effects from

the Moon, Sun and other celestial bodies may be masked or partially masked by the

effects of the geopotential, especially when the effects are on the order of the smallest

terms in the geopotential. Once the geopotential is removed it may be possible to

more accurately study and model such effects.

2.7 Summary

Modern methods of orbit determination and prediction are hindered by not

including all of the terms of the geopotential when integrating the orbit, which leads

to errors in the accuracy that build as the period of the integration is increased.

The KAM theorem may provide a better method, using actual position data for the

analysis to find the fundamental frequencies and the corresponding coefficients. This

work attempts to apply KAM theorem to the GRACE and Jason-1 orbits, to show

that the orbits could be fit to tori for the purpose of modeling and prediction.
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III. Method

This chapter begins with a discussion of the satellites and corresponding data. The

fundamental frequencies are defined, followed by a discussion of the algorithm used to

find the frequencies from the data. Finally, the construction of the torus is explained,

along with how the torus is compared to the original data to understand the accuracy

of defining the orbit with this method.

3.1 Data

The GRACE data files were obtained from the Physical Oceanography Dis-

tributed Active Archive Center (PO.DAAC) at NASA’s Jet Propulsion Laboratory.

The positions are obtained from the onboard GPS receivers; they are given in the

ECEF coordinate frame at 60 second intervals and are accurate to within a few cen-

timeters [16]. The data files also contain position errors, velocities, velocity errors,

data validation fields and other fields that are not required for this analysis [4]. A

Matlab
R© script was written to extract the x, y, and z positions from the data files.

The Jason-1 data files were obtained from NASA’s Goddard Space Flight Center

(GSFC). The positions are determined from a combination of the SLR and DORIS

tracking of the satellite; they are given in the ECEF coordinate frame at 60 second

intervals and are accurate to within 3-4 cm [3]. The data files contain 10-day intervals

that correspond to the 10-day repeat cycle of the orbit. To ensure enough data was

available for the analysis, three repeat cycles were used. Cycles 133-135 were chosen

because they followed a maneuver; this was done to reduce the likelihood that a

maneuver would occur during the period of analysis. Again, the data files contained

more information than was needed, so a Matlab
R© script was written to extract the

x, y, and z positions from the data files.

The position data sets for both GRACE and Jason-1 are on the order of ≈
100, 000 meters and are separated by 60 seconds. This author uses the dimension-

less quantities of Distance Units (DU) and Time Units (TU) during analysis, which
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reduces the data to on the order of ≈ 1.2 DU.

1 DU = 6378136.3 m (3.1)

1 TU = 806.810988 s (3.2)

In addition to reducing the magnitudes of the position data, the choice of DUs and

TUs results in the radius of Earth, R⊕, and the gravitational parameter, µ, being

equal to 1. This simplifies the calculation of the estimate frequencies in Equations

(3.3)-(3.5) below.

3.2 Fundamental Frequencies

An Earth orbiting satellite will have three fundamental frequencies: the anoma-

listic frequency, the Earth’s rotation rate plus the nodal regression rate, and the

apsidal regression rate. These frequencies determine the time is takes for the satellite

orbit to traverse the dimensions of the torus. These frequencies are approximated by

Equations (3.3)-(3.5), which include only the J2 effects on the mean motion, the right

ascension of the ascending node, and the argument of perigee [17].

ω̃1 ≈
√

µ

a3

{

1 − 3J2R
2
⊕

2a2(1 − e2)3/2

(

3

2
sin2 i − 1

)

}

(3.3)

ω̃2 ≈ ω⊕ +
3
√

µJ2R
2
⊕

2a(7/2)(1 − e2)2
cos i (3.4)

ω̃3 ≈ − 3
√

µJ2R
2
⊕

2a7/2(1 − e2)2

(

5

2
sin2 i − 2

)

(3.5)
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The total time it takes for a satellite to traverse the entire torus is dependent on the

smallest frequency. It gives the toroidal period as

TKAM =
2π

ω3

. (3.6)

3.3 Frequency Determination Algorithm

Since the data used in this analysis covers a finite period of time, it seems

natural to use a finite time Fourier transform method of the form in Equation 3.7. In

this work, the function f(t) is the position coordinates for the orbit.

F(ω) =
1

2T

∫ T

−T

f(t)e−ωitχ(t)dt

=
1

T

∫ T

0

f(t)e−ωitχ(t)dt − 1

T

∫ −T

0

f(t)e−ωitχ(t)dt (3.7)

The Fourier transform algorithm used in this work is based on Laskar’s [10–12]

Numerical Algorithm of the Fundamental Frequency (NAFF), which has been shown

to identify the frequencies of a quasiperiodic function to a higher precision than a

simple Fast Fourier Transform (FFT). An FFT typically assumes the function has a

period of 2τ over a range of [−τ : τ ], with an accuracy proportional to 1/τ ; Laskar’s

NAFF does not make this assumption and, with the use of a window function, χ,

converges on the frequencies with an accuracy proportional to 1/τ 4. The NAFF finds

the frequency by iterating over Equation (3.8).

φ(ω) =
1

2

∫ τ

−τ

f(t)e−iωtχ(t/τ)dt (3.8)

The Hanning window function is used in this analysis and is given by Equation (3.9).

χ(t/τ) = 1 + cos

(

πt

τ

)

(3.9)
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The approximate frequencies from Equations (3.3) - (3.5) are input into the algorithm,

as initial guesses, to reduce the number of iterations. As noted above, the precision

of the frequency found is higher than it would be with a simple FFT. However, this

doesn’t mean that the frequencies are exact, just very close.

It should also be noted that the Hanning window function accelerates the con-

vergence of finding the peak frequency; higher order Hanning functions result in faster

convergence, though Laskar shows that the cost-to-benefit drops off after windows of

order 3-5 [11]. Higher order functions also result in wider peaks, which leads to

more uncertainty in the frequency. This author uses the 2nd order Hanning window

function, which seems to work fairly well.

Figure 3.1 shows the results of the Fourier transform of the GRACE data. The
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Figure 3.1: PSD plot for the GRACE-A satellite showing how
the modified Laskar algorithm finds the frequencies.
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triplet structure of the frequencies is due to the fact that ω2, the combination of ω⊕

and the nodal regression rate, is seen in the x and y components of the position,

but it does not affect the z. This can be explained by first, noting that all of the

components change with the frequency of the orbit, ω1, but the x and y components

also change with ω⊕. This is highlighted by the peak in the x and y frequencies, at ≈
0.0585 rad/TU , which corresponds to ω⊕, but no such peak exists in the z frequency.

Second, the regression of the node is a rotation about the z axis, so it won’t show up in

the z component of the orbit. The triplet structure of the frequencies is also repeated

at equal intervals, which correspond to integer multiples of the orbital frequency,

nω1. The smaller peaks that flank each large peak are higher order combinations of

nω1 ± mω2, where n and m denote integer multiples of the frequencies [15].

The width of the peaks is partially a consequence of the Hanning window and

partially a consequence of the finite span of data. Using a larger span of data would

reduce the width of the peaks, possibly resulting in more accurate identification of the

frequencies. However, the issue that one encounters when analyzing longer periods of

on orbit satellite data, is maneuvering. If a torus were already created for an orbit, a

maneuver would change the frequencies, the series coefficients, or both, which would

require the torus to be recalculated. A maneuver during the analysis of the data could

also change the frequencies, resulting in the apparent identification of multiple peaks

for each frequency, which would invalidate the analysis.

3.4 The KAM Torus

After the frequencies are identified, the torus can be formed from the funda-

mental frequencies and the Fourier coefficients. The Fourier coefficients are defined

for a single frequency line in [20] as,

C = 2ℜA(ω), S = 2ℑA(ω) (3.10)
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where A(ω) is the peak amplitude of the frequency multiples found during the Fourier

transform analysis. With the frequencies and the coefficients, the coordinates of the

KAM torus can be calculated by Equation (3.11); j is the series limit of the coefficients,

~j is a summation vector, and ~ω is the vector of torus basis frequencies [20].

q(t) = C0 +
∑

j

{Cj cos(~j · ~ωt) + Sj sin(~j · ~ωt)} (3.11)

In this work, a series limit of 10 is used when calculating the Fourier coefficients; this

means the coefficients are defined for the frequency harmonics up to 10ω1±10ω2. The

constant term C0 is found from the initial conditions.

Using a known starting position, the positions for any point in the future (or

past) can then be calculated and compared to the real data to get the residuals and

determine how well the torus approximates the orbit. The torus can have errors in

both the frequencies and the Fourier series coefficients, but they show up in distinct

and different ways. If there are small errors in the frequencies, they will show up as

linear error growth over time. The coefficients define the shape and position of the

torus in space, so errors show up in the torus as either a shift from where it should

be in space, or in a shape difference from that of the true torus.

3.5 Summary

The fundamental frequencies for the GRACE and Jason-1 orbits are found from

the modified Laskar algorithm analysis of the precise orbital position data. The

Fourier coefficients are then calculated to complete the definition of the KAM tori for

each satellite, allowing the orbit to be modeled. The positions are then calculated

from the torus and compared to the real position data to determine how well the

torus models the orbit.
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IV. Results and Findings

This chapter shows that discrete frequencies exist for both the GRACE and Jason-1

satellites. These are then used to create the tori. The tori are used to predict the

positions of the satellites and compared to the real orbital data.

4.1 GRACE

This section will cover the frequency estimates for the GRACE-A satellite, fol-

lowed by the frequencies found using the modified Laskar algorithm. Finally, the

torus is compared with the real orbital data.

4.1.1 Frequency Estimates. The estimates for the GRACE frequencies

are calculated from Equations (3.3)-(3.5) and are given in Equations (4.1)-(4.3).

The values used for calculating the frequencies are given as a ≈ 6843000 m, µ =

3986004.415E+8 m3/s2, R⊕ = 6378136.3 m, i ≈ 89◦, e ≈ .0017, J2 = 4.84165339915E−
4, and ω⊕ = 7.292115857916E − 5 rad/s.

ω̃1 = 0.899567967941131 rad/TU (4.1)

= 1.114967418186E − 3 rad/s

ω̃2 = 5.8843500509237E − 2 rad/TU (4.2)

= 7.2933439658E − 5 rad/s

ω̃3 = 2.83439973794E − 4 rad/TU (4.3)

= 3.51309014E − 7 rad/s

4.1.2 Laskar Frequency Output. The Laskar algorithm only identified the

first two frequencies for the GRACE orbit; a value for the third frequency was given,

but it was on the order of 10−30, which is effectively zero and assumed to be erroneous.
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This is not altogether surprising, since the orbit is very circular, e ≈ .0017465. This

problem occurs for two reasons. First, based on the approximate frequency from

equation (4.3), above, we expect the period of a torus for this orbit to be ≈ 207

days. Only 31 days worth of data were used (1-31 Mar 08), so the perigee only moved

≈ .721 rad; this makes it difficult to see the movement of the perigee, given the

amount of data used. Second, as mentioned in Section 3.3, the peak that identifies

the frequency has a width. Since the frequency is already close to zero, the width

of the peak identified for the smallest frequency may cross zero, which leads to the

error.

The first two frequencies are found to be very close to the approximate frequen-

cies given by Equations (4.1) and (4.2).

ω1 = 0.899330102615437 rad/TU (4.4)

ω2 = 5.890847214269741E − 2 rad/TU (4.5)

Figures 4.1-4.4 are Power Spectral Density (PSD) plots for the GRACE-A data.

The largest peak in Figure 4.1 corresponds to ω1 and appears in the analysis of the z

component because it is unaffected by the Earth’s rotation and nodal regression rates.

Alternatively, x and y are affected by the Earth’s rotation and the nodal regression

and so, the largest peaks in Figure 4.2 and Figure 4.3 come from ω1 ± ω2.

Figure 4.4 has all three components plotted to show how the peaks in the x

and y components straddle the z peak. The smaller frequency range displayed, also

shows the width of the peaks more clearly than Figures 4.1 - 4.3. As discussed in

Section 3.3, the width of the peaks is a source of error in the frequencies. This may

in fact be the reason ω3 was not identified. In the z frequency there is a spike right at

zero. It is possible this spike corresponds to ω3, but due to the width the top of the

peak cannot be identified, which makes it impossible to find the frequency. Further

analysis is required to confirm this hypothesis.
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Figure 4.1: z frequency PSD plot for the GRACE-A satellite.
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Figure 4.2: x frequency PSD plot for the GRACE-A satellite.
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Figure 4.3: y frequency PSD plot for the GRACE-A satellite.
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4.1.3 Comparing KAM to Real Data. After the frequencies were identified

by the Laskar algorithm, the torus is formed and compared to the real data, and the

residuals were calculated. The initial residuals, which are displayed in Figure 4.5, are

nearly zero at the initial conditions, t = 0. However, frequency errors are present in

both frequencies as evidenced by the error growth as t goes toward ±tfinal.
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Figure 4.5: This shows the residual growth over time using the
frequencies found from the Laskar algorithm.

The frequency errors must be small since they show up as linear error growth;

the explanation is given by

X = C cos(ω1 + δω1)t + S sin(ω1 + δω1)t

= C(cos ω1t cos δω1t − sin ω1t sin δω1t)

+ S(sin ω1t cos δω1t + cos ω1t sin δω1t)

≈ C cos ω1t − Cδω1t sin ω1t + S sin ω1t + Sδω1t cos ω1t (4.6)
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using standard trigonometric identities and the small angle approximation. The δω1t

terms that are left, result in the linear error growth visible in Figure 4.5; the same

result can be shown for δω2.

From the slope of the residual peaks, we can approximate the magnitude of

the frequency errors. Since the torus only requires the frequencies and the Fourier

coefficients, it is possible to adjust the frequencies, without having to rerun the entire

frequency analysis, to try and reduce the error. While adjusting the frequencies, the

Fourier coefficients are assumed to be correct and held constant.

The frequency errors for ω1 and ω2 were found to be on the order of 10−5 rad/TU .

Adjusting only ω1, the frequency error was found to be ≈ 7E − 5 rad/TU . Then,

adjusting only ω2, the frequency error was found to be ≈ 5E − 5 rad/TU ; further

adjustments were made by making smaller changes to the frequencies. Figure 4.6

shows how the residuals improved after the frequencies were adjusted.
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Figure 4.6: Residual improvements with δω1 = 7.4E−5 rad/TU
and δω2 = 5.4E − 5 rad/TU .
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Further adjustments revealed a limit to the improvement that could be gained

by the frequency changes. Figure 4.7 shows the residuals for the frequencies adjust

by δω1 = 7.7E − 5 rad/TU and δω2 = 5.7E − 5 rad/TU . Over all, the residuals are

much improved over the initial findings. However, the residuals have begun to show

a quadratic form in the z component. This is likely due to atmospheric drag, which

appears as quadratic changes in the mean anomaly of the orbit [17]. Atmospheric drag

is not modeled by the KAM theorem, and must be handled by some other means.
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Figure 4.7: Residual improvements with δω1 = 7.7E−5 rad/TU
and δω2 = 5.7E − 5 rad/TU .

Looking closer at the area where the residuals are the smallest, Figure 4.8 shows

they are still fairly high. The z coordinate residuals are ≈ 20 km, and the x and y

coordinate residuals are off by as much as 40 − 90 km.

Some of the error still present in the residuals is due to errors in the coefficients.

This is most likely the case with the offset that is present in each of the components;

the y component shows the largest offset, but all three have some level of offset. Figure

4.8 also shows a distinct, repeating pattern in the x and y residuals. Looking more
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Figure 4.8: This shows the error still present in the region where
the frequency adjustment is most effective.

closely at the x residuals, Figure 4.9 shows that the frequency of the peaks is nearly

equal to the orbital frequency. There are also consistently 8 peaks in each repetition.

This suggests there may be a dominate error in the coefficient defined by the eighth

harmonic of ω1. However, further analysis is needed to confirm this and resolve the

issue.

Unfortunately, these remaining errors are too large for the torus to be useful for

modeling the orbit. If these errors could be driven down further, through refinement of

the torus, it may be possible to model the GRACE orbit with a KAM torus. However,

perturbation theory would still be required to account for the effects of atmospheric

drag.
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Figure 4.9: Periodic changes in the GRACE x residuals.

4.2 Jason-1

This section will cover the frequency estimates for the Jason-1 satellite, followed

by the frequencies found using the modified Laskar algorithm. Finally, the torus will

be compared with the real orbital data.

4.2.1 Frequency Estimates. The estimates for the Jason-1 frequencies

are calculated from Equations (3.3)-(3.5) and are given by Equations (4.7)-(4.9).

The values used for calculating the frequencies are given as a = 7715636.3 m,

µ = 3986004.415E + 8 m3/s2, R⊕ = 6378136.3 m, i ≈ 66◦, e = .0007465, J2 =

4.84165339915E − 4, and ω⊕ = 7.292115857916E − 5 rad/s.

ω̃1 = 0.751499356368578 rad/TU (4.7)

= 9.31560930902E − 4 rad/s
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ω̃2 = 5.8985058639173E − 2 rad/TU (4.8)

= 7.3108893552E − 5 rad/s

ω̃3 = 3.2735245545E − 5 rad/TU (4.9)

= 4.0573624E − 8 rad/s

4.2.2 Laskar Frequency Output. The Laskar algorithm only identified the

first two frequencies for the Jason-1 orbit; a value for the third frequency was given,

but it was on the order of 10−28, which is effectively zero and considered erroneous.

This is not altogether surprising, since the orbit is very circular, e = .0007465. This

problem occurs for two reasons. First, based on the approximate frequency from

equation (4.9), above, we expect the period of a torus for this orbit to be ≈ 5 years.

Only ≈ 30 days worth of data were used, so the perigee only moved ≈ .103 rad;

this means it would be difficult to see the movement of the perigee in the period

analyzed. Second, as mentioned in section 3.3, the peak that identifies the frequency

has a width. Since the frequency is already close to zero, the width of the peak for

the smallest frequency may cross zero, which leads to the error.

The first two frequencies are found to be very close to the approximate frequen-

cies given by equations (4.7) and (4.8).

ω1 = 0.751485615955426 rad/TU (4.10)

ω2 = 5.915352315796121E − 2 rad/TU (4.11)

Figures 4.10-4.13 are PSD plots for the Jason-1 data. The largest peak in

Figure 4.10 corresponds to ω1. As discussed above, it appears in the analysis of the

z component because it is unaffected by the Earth’s rotation and nodal regression

rates. Again, x and y are affected by the Earth’s rotation and the nodal regression
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Figure 4.10: The z frequency PSD plot for the Jason-1 satellite.

and the largest peaks in Figure 4.11 and Figure 4.12 come from ω1 ± ω2. Figure 4.13

has all three components plotted to show how the peaks in the x and y components

straddle the z peak.

Another result to note in Figures 4.10-4.12 is the magnitudes of the peaks. In

Fourier analysis of quasiperiodic systems, one expects that the power will fall off with

increasing integer multiples of the frequencies [15], e.g. A(ω1) > A(2ω1) > A(3ω1).

This is not the case for Jason-1. Looking specifically at Figure 4.10, it can be seen

that the power of the peak for 3ω1 is less than the peak for ω1, as expected, but

larger than the power of the peak for 2ω1, which is contrary to what we expect. This

suggests there may be an error in the coefficient calculated for the 2ω1 frequency line,

which will show up as errors in the residuals when the torus is compared to the real

data.
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Figure 4.11: The x frequency PSD plot for the Jason-1 satellite.
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Figure 4.12: The y frequency PSD plot for the Jason-1 satellite.
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Figure 4.13: Jason-1 PSD plot showing the triplet structure of
the frequencies.

4.2.3 Comparing KAM to Real Data. After the frequencies were identified

by the Laskar algorithm, the torus is formed and compared to the real data, and the

residuals were calculated. The initial residuals, which are displayed in Figure 4.14,

are nearly zero at the initial conditions, t = 0. However, a frequency error in ω2

appears as error growth when t goes toward ±tfinal; the lack of frequency error in ω1

is shown by the fact that the z residuals remain near zero over the entire time span.

The frequency error is small, resulting in linear error growth (see equation (4.6)).

From the slope of the residual peaks, we can approximate the magnitude of the fre-

quency error. Since the torus only requires the frequencies and the Fourier coefficients,

it is possible to adjust the frequency, without having to rerun the entire frequency

analysis, to try and reduce the error. While adjusting the frequency that was in error,

the other frequency and the Fourier coefficients are assumed to be correct and held

constant.
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Figure 4.14: This shows the residual growth over time using the
frequencies found from the Laskar algorithm.

For Jason-1, the frequency error was found to be on the order of 10−5 rad/TU .

After some analysis, it was determined that the error was ≈ 1.861E−5 rad/TU , with

the adjusted frequency given in Equation (4.12).

ω2 = 5.917213315796121E − 2 rad/TU (4.12)

Figure 4.15 shows the residuals after the frequency correction. The root mean square

of the residuals is less than 240 meters, and at no point in the period of analysis do

the residuals exceed 1 km.

Based on the discussion in Section 4.2.2, a large part of the remaining error

is believed to be due to coefficient errors. Figure 4.16 highlights the x residuals for

Jason-1, which do not show a periodic repetition over the span of data like that seen

in the GRACE data. This suggests that unlike the GRACE results, where it seemed

the majority of the coefficient error was due to one harmonic, the Jason-1 residual

errors may be due to multiple coefficient errors.
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Figure 4.15: This shows the residuals over time after the fre-
quency error was corrected.
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Figure 4.16: The x residuals show no short term pattern.
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4.3 Summary of Results

KAM tori were created for both satellites, but after correcting for frequency

errors, only the Jason-1 torus was able to produce residuals with a reasonable level

of accuracy. The GRACE data produced results indicating that atmospheric drag

cannot be ignored, which hinders the ability of KAM theorem to define the orbit

without further studies. The Jason-1 torus is promising, but further refinement is

needed to justify its use for orbit modeling.
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V. Conclusions

This chapter presents the conclusions that are based on the results from Section IV.

As with the results, each satellite is discussed individually. Finally, recommendations

are made for further study into the applicability of using KAM theorem to define the

orbits for GRACE and Jason-1.

5.1 GRACE

The results from Section 4.1 suggest that the GRACE satellites may lie on a

torus; however, the effects of atmospheric drag cannot be ignored. There also appear

to be errors in the coefficients that must be resolved in order to accurately define

the torus. If the coefficient errors can be resolved, it should be possible to define the

torus and use perturbation theory to account for the effects of the atmospheric drag;

however, further study is required to confirm this.

5.2 Jason-1

The results from Section 4.2 indicate that the Jason-1 satellite does lie on a

torus. The comparison of the torus data with the real data shows good agreement,

but there is still error that needs to be removed. Analysis of the Fourier coefficients

should be able to resolve the errors present.

5.3 Recommendations for Further Study

The methods employed in this work provide a good starting point for defining

KAM tori for on orbit satellites. The next step should take the frequencies and Fourier

coefficients identified by this method and refine them further, with a fitting algorithm,

such as least squares.

The period of validity also needs to be studied. Characterization of how the

errors continue to change and grow outside of the period of data used in the analysis

is needed. The Jason-1 torus defined in this study could be used for a first analysis of
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this problem, but a torus that is further refined, such as with the methods mentioned

above, would be more advantageous.

Characterization of the altitude range for the KAM tori should also be done to

understand where the non-geopotential perturbations can be ignored. As shown by

the GRACE results, lower altitude satellites must deal with the effects of atmospheric

drag; similarly, much higher altitude satellites are significantly affected by the Moon,

Sun and solar radiation pressure, and must take into account these effects. Under-

standing where these regions reside will allow for studies into how the perturbations

affect the KAM tori and how the effects can be overcome.
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Appendix A. Data files

A.1 GRACE

The GRACE data files are extracted from the larger Level-1B (L1B) data files

that are available from the PO.DAAC at JPL. The L1B files are produced for each

day and can produce a large number of smaller data files. Table A.1 describes the

format of the L1B data file containing the positions used in this work.

Table A.1: The NASA code obtained from JPL produces the GNV1B
data files containing the following fields [4].

Parameter Definition Data Type Byte Length Units

gps time seconds past noon 01-Jan-2000 Integer 4 s
GRACE id GRACE satellite identifier Character 1 N/A
coord ref Coordinate reference frame where Character 1 N/A

E = Earth Fixed
T = Inertial

xpos Position, x value (ITRF) Double 8 m
Precision

ypos Position, y value (ITRF) Double 8 m
Precision

zpos Position, z value (ITRF) Double 8 m
Precision

xpos err Formal error on x position Double 8 m
Precision

ypos err Formal error on y position Double 8 m
Precision

zpos err Formal error on z position Double 8 m
Precision

xvel Velocity along x-axis (ITRF) Double 8 m
Precision

yvel Velocity along y-axis (ITRF) Double 8 m
Precision

zvel Velocity along z-axis (ITRF) Double 8 m
Precision

xvel err Formal error in velocity along x-axis Double 8 m
Precision

yvel err Formal error in velocity along y-axis Double 8 m
Precision

zvel err Formal error in velocity along z-axis Double 8 m
Precision

qualflg Data quality flag (LSB = bit 0) Unsigned 1 N/A
Character

bit 0 = Not Defined
bit 1 = Not Defined
bit 2 = overlap data missing before start midnight
bit 3 = overlap data missing after start midnight
bit 4 = overlap data missing before end midnight
bit 5 = overlap data missing after end midnight
bit 6 = Not Defined
bit 7 = Not Defined
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A.2 Jason-1

The Jason-1 data files are available from the GSFC FTP site in the format

described in Table A.2. However, to ensure the data is accurate it must be run

through the Hermite interpolator, also available from the GSFC FTP site [8]. After

the interpolator has been run on the data, it outputs the positions in the ECEF

reference frame, as well as velocities, timing data and other information that was not

used by this author.

Table A.2: The Hermite interpolator code obtained from NASA ingests
the following information, to produce the ECEF position
used in this work.

Record Item Format Description of Format

N 1 D22.16 Epoch year, month, day, hour, min
satellite time in form YYMMDDhhmm (UTC)

N 2 D22.16 Epoch seconds satellite time (UTC)
N 3 D22.16 Sidereal time - Greenwich hour

angle satellite epoch (DEGREES)
N 4 D22.16 Polar motion X (milli arc-seconds)
N 5 D22.16 Polar motion Y (milli arc-seconds)
N 6 D22.16 Epoch time in ET days from Jan 0.0

of the reference year of the arc (days)
N+1 7-9 3D22.16 Satellite Inertial True of Date (ITOD)

X,Y,Z elements (meters)

N+1 10-12 3D22.16 Satellite ITOD Ẋ,Ẏ ,Ż elements (meters/second)
N+2 13-15 3D22.16 Satellite Earth Centered Fixed (ECF)

X,Y,Z elements (meters)

N+2 16-18 3D22.16 Satellite ECF Ẋ,Ẏ ,Ż elements (meters/second)
N+3 19 22I1 Flags indicating orbit mode (0=no, 1=yes)

(1) OCCULTATION (0=sun, 1=shadow)
Yaw steering events (nominal Beta’ example)
(2) +ON ( 15 to 80 DEG BETA’)
(3) +OFF ( 0 to 15 DEG BETA’)
(4) +HIGH OFF ( 80 to 90 DEG BETA’)
(5) +RAMP UP ( 15 to 15.1DEG BETA’)
(6) +RAMP DOWN ( 15 to 14.9DEG BETA’)
(7) +FLIP ( +0 to -0 DEG BETA’)
(8) -ON (-15 to -80 DEG BETA’)
(9) -OFF ( 0 to -15 DEG BETA’)
(10)-HIGH OFF (-80 to -90 DEG BETA’)
(11)-RAMP UP (-15 to-15.1DEG BETA’)
(12)-RAMP DOWN (-15 to-14.9DEG BETA’)
(13)-FLIP ( -0 to +0 DEG BETA’)
(14 - 22) spare

N+3 20 D22.16 Beta’ angle (degrees)
N+3 21 D22.16 Yaw angle (degrees)
N+3 22 D22.16 Orbit angle (degrees)
N+3 23 D22.16 Solar array pitch angle (degrees)
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Appendix B. Additional GRACE Results

This appendix provides results for the GRACE satellite that were obtained during

the analysis. A brute force method for changing the frequencies is highlighted here,

and was used to arrive at the final results and conclusions presented in main body of

this thesis.

Figures B.1-B.3 show the initial GRACE residuals for each component. The

error growth in the z component has to be due to a frequency error in ω1, since ω2

does not show up in the z component. The error growth in the x and y components

may be due to the error in ω1, or an error in ω2, or possibly both.
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Figure B.1: The residual growth over time in the x component.

Since ω1 is present in all the components, this frequency was changed first.

Examining the slope of the error growth on the z component, the author found the

expected error to be on the order of 10−5 rad/TU . The z residuals after a change of

1E − 5 rad/TU are presented in Figure B.4, and show a small improvement over the

initial z residuals presented in Figure B.3. Adjustments were made to reduce the error
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Figure B.2: The residual growth over time in the y component.
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Figure B.3: The residual growth over time in the z component.
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growth in z over time, until the frequency adjustment reached 7E−5 rad/TU . Further

adjustments on the order of 10−5 rad/TU resulted in the error growth increasing

again. Figure B.5 shows the residuals after the frequency adjustment.
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Figure B.4: The residual growth over time in the z com-
ponent with a frequency adjustment of δω1 =
1Eneg5 rad/TU .

Figure B.5 shows the error growth in x and y decreased from those shown in

Figures B.1 and B.2. However, the residuals still show a frequency error on the

order of 10−6 rad/TU . Since the ω1 frequency error has been partially resolved, the

remaining frequency error in x and y must be from errors in ω2. Following the same

method as above, the frequency error was found to be ≈ 5E − 6 rad/TU . Figure B.6

shows the residuals with the both frequencies adjusted.

An interesting characteristic shows up in the residuals displayed in Figure B.6.

The residuals on the left are much greater than the residuals on the right. Finer
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Figure B.5: The GRACE residuals after the frequency change
of δω1 = 7Eneg5 rad/TU .

adjustments to the frequencies only leads to balancing the ends of the residuals,

but the overall magnitudes are not greatly reduced. This can be seen in Figure

4.7. The reason the overall residuals cannot be furthered improved is the existence

of atmospheric drag on the GRACE satellite. This also accounts for the quadratic

shape in the z residuals.
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Figure B.6: The GRACE residuals after the frequency changes
of δω1 = 7Eneg5 rad/TU and δω2 =
5Eneg6 rad/TU .
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Appendix C. Additional Jason-1 Results

This appendix provides additional results for the Jason-1 satellite that were obtained

during the analysis. A brute force method for changing the ω2 frequency is highlighted

here.

Figures C.1-C.3 show the difference in the initial x and y residuals and the initial

z residuals. Notice that the z residuals are same as those presented in Figure 4.15

without any changes to the frequencies, but the x and y are off significantly. From

this, the author knew that the only significant frequency error was in ω2.
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Figure C.1: The residual growth over time in the x component.

The slope of the residual growth in x and y indicates that the error in ω2 is on

the order of 10−5. Figure C.4 shows that adjusting the frequency by 1E − 5 reduced

the residuals by about 1
2
. However, the residuals are still off by ≈ 100 km. Figure

C.5 shows that adjusting the frequency by 2E − 5 reduced the residuals by an order

of magnitude.

The goal for this work was to get the residuals to about 1 km. Having already

improved the residuals from ≈ 200 km down to ≈ 15 km, the author assumed that
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Figure C.2: The residual growth over time in the y component.
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Figure C.3: The residual growth over time in the z component.
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Figure C.4: The Jason-1 residuals after the frequency changes
of δω2 = 1Eneg5 rad/TU .

further frequency improvements would be of lower order. The first attempt was to

try δω2 = 2.1E − 5 rad/TU . As seen in Figure C.6, this resulted in an increase

in the residuals. This meant that the frequency adjustment was actually too high.

Continuing to adjust the frequencies led to the final frequency adjustment discussed

in Section 4.2.3.
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Figure C.5: The Jason-1 residuals after the frequency changes
of δω2 = 2Eneg5 rad/TU .
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Figure C.6: The Jason-1 residuals after the frequency changes
of δω2 = 2.1Eneg5 rad/TU .
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